
1

GRAPE 2-D Grid Generator for Turbomachinery
User’s Manual and Documentation
Version 104, Oct. 24, 1997

Dr. Rodrick V. Chima
NASA Glenn Research Center, MS 5-10
21000 Brookpark Road
Cleveland, Ohio 44135 USA

phone: 216-433-5919
fax: 216-433-5802
email: fsrod@grc.nasa.gov
internet:http://www.grc.nasa.gov/WWW/5810/webpage/rvc.htm

Introduction
The GRAPE code (GRids about Airfoils using Poisson's Equation) is an elliptic grid generator originally intended for iso-

lated airfoils. The code was written by Reece Sorenson at NASA Ames Research Center (1, 2). This document describes mod-
ifications made to the GRAPE code to allow generation of periodic C-type grids for turbomachinery blades, and serves as the
users' manual for turbomachinery problems. Reference (1) describes the theory behind the original GRAPE code, and refer-
ence (2) is a detailed users' manual for external flow problems. Any publications resulting from the use of this code should
include these two references. Turbomachinery grids generated with the GRAPE code can be used directly with the RVCQ3D
code. References (3, 4) describe the RVCQ3D code and include many examples of grids generated with the GRAPE code.

The GRAPE code allows arbitrary specification of inner and outer boundary points, then generates interior points as a
solution to a Poisson equation. Forcing terms in the Poisson equation are chosen such that the desired grid spacing and inter-
section angles are maintained at the inner and outer boundaries.

The GRAPE code is based on a Cartesian coordinate system which is mapped to a general body-fitted coor-
dinate system, where ξ is in the streamwise direction and η is in the blade-to-blade direction. Turbomachinery blades are often
specified on a surface of revolution in a cylindrical-like system, where m is the arc length along the surface and θ is the
circumferential direction. To use the GRAPE code for turbomachinery blades, all θ-coordinates must be multiplied by some
mean radius to give both coordinates consistent units of length. This can be done to the blade input coordinates in advance,

or done within the GRAPE code using the variable yscl, described later. GRAPE can then use m as x, and as y.
Numerous modifications were made to the original GRAPE code, although all input options described in (2) were

retained. The code was rewritten to modernize the Fortran. A large number of IF and computed GO TO statements were elim-
inated, and INCLUDE and PARAMETER statements were added to simplify redimensioning. A few routines were speeded up
for better performance on modern computers.

New inner and outer boundary routines were added for turbomachinery blades. The new inner boundary routine adds sev-
eral input parameters that give considerable control over the spacing of points on the blade surface. Periodic outer boundaries
are generated by shifting the mean camber line one-half pitch above and below the blades. Polynomial extensions are added
upstream, and linear extensions are added downstream. The outer boundary points are equally spaced with arc-length and are
periodic top-to-bottom.

GRAPE is written completely in Fortran and runs as a quick batch job on most workstations or mainframe computers. It
has been run on a PC. Code input is supplied as an ASCII dataset, with grid parameters specified as namelist input, and blade
shapes input as pairs. Some printed output is provided. No graphical output is provided, but grid files can be read
directly and plotted using the public domain CFD visualization codes PLOT3D and FAST, or the commercial codes FIELD-
VIEW and TECPOT.

x y,() ξ η,()

m θ,()

r

rθ

x y,()

2

This documentation describes how to dimension, compile, and run the GRAPE code for Silicon Graphics (SGI) worksta-
tions and Cray mainframes. The output file format is described. Finally all namelist input variables and blade coordinate input
options are described in detail.

References

1. Steger, J. L., and Sorenson, R. L. “Automatic Mesh Point Clustering Near A Boundary in Grid Generation with Elliptic
Partial Differential Equations,” Journal of Computational Physics, Vol.33, No. 3, Dec. 1979, pp.405-410.

2. Sorenson, R. L., “A Computer Program to Generate Two-Dimensional Grids About Airfoils and Other Shapes by Use
of Poisson’s Equation,” NASA TM-81198, 1980.

3. Chima, Rodrick V., “Explicit Multigrid Algorithm for Quasi-Three-Dimensional Viscous Flows in Turbomachinery,”
AIAA Journal of Propulsion and Power, Vol. 3, No. 5, Sept.-Oct. 1987, pp. 397-405.

4. Chima, Rodrick V., “A k-ω Turbulence Model for Quasi-Three-Dimensional Turbomachinery Flows,” AIAA Paper 96-
0248, Jan. 1995.

3

Compiling and Running GRAPE
GRAPE is supplied as a unix script which generates the source and include files and compiles them. The format of the

script is shown below.

#! /bin/csh -f
cat > grape.f << ‘/eof’
#GRAPE source code goes here
‘/eof’
cat > gridp << /eof
#gridp is an include file used for dimensioning the code
 parameter(idm=385,jdm=64)
/eof
#compiler commands with options go here
/bin/rm...

On a unix platform, edit the script and go to the bottom. Make sure the dimensioning parameters statements are sufficient
for the grid to be run, i.e., for a grid size of , set and . Comment, uncomment, or add
compilation commands appropriate for the computer to be used. (See “Compiling GRAPE” below.) Save the script, set execute
permission, and execute it.

On a PC, manually strip out, save, and compile the files between the cat and /eof commands. Consult your compiler man-
ual for compiling instructions.

Compiling GRAPE

#SGI power series processor
f77 -pfa -O2 -lfpe -o grape grape.f
strip grape

#SGI R4000 processor
f77 -O2 -sopt -mips2 -lfpe -o grape grape.f
strip grape

#SGI R10000 compiler
f77 -O3 -mips4 -WK,-o=0,-so=2,-ro=0 -OPT:round=3:IEEE_arith=3 -lfastm
strip grape

#Cray C90
f90 -O3 -o grape grape.f

Running GRAPE
The executable program is run as a standard unix process:

grape < std_input > std_output &

Output Grid File
The output grid file is written to Fortran unit 1 (fort.1). The file is an unformatted binary file which may be linked to a file

name before running grape,

ln file.xyz fort.1

or renamed after running grape,

mv fort.1 file.xyz

jmax kmax,() idm jmax≥ jdm kmax≥

4

Binary grid files can be used immediately by RVCQ3D on the same type of computer on which they were generated. Files
generated on an SGI machine can be read into PLOT3D using the read /unformatted option. Files generated on a Cray can be
converted to SGI format in one of two ways:

1. By using the itrans command at NASA Ames to convert the files to SGI binary. Files converted using itrans can be read
into PLOT3D using the read /binary option <default>.

itrans file.xyz file.SGI.xyz

2. By assigning the files as 32 bit ieee binary files on the Cray before execution. The lower precision does not affect the
accuracy of the solvers. Files written on a Cray while assigned as ieee binary can be used directly by RVC3D or SWIFT on an
SGI machine and can be read into PLOT3D using the read /unformatted option.

assign -F f77 -N ieee fort.1

Grid XYZ-File
Grids are stored using standard PLOT3D xyz-file structure. Single block grids can be read with the following Fortran

code:

c read grid coordinates
 read(1)jmax,kmax
 read(1)
 &((x(j,k),j=1,jmax),k=1,kmax),((y(j,k),j=1,jmax),k=1,kmax)

5

Namelist Input
Only C-type grids can be generated for turbomachinery problems. Figures 1 − 3 at the end of this document show example

grids distributed as test cases with the GRAPE code. Every other line in the j-direction has been omitted for clarity.
This section describes only those input parameters that are commonly used for turbomachinery problems. The GRAPE

code does support many other options for generating inner and outer boundaries for isolated airfoils, and for specifying input
parameters as arrays rather than constants. The user is referred to the original GRAPE documentation (2) for information on
these other options.

GRAPE input consists of an ascii file with three blocks of namelist input. The first two blocks include parameters control-
ling grid size, inner and outer boundary stretching, and operation of the elliptic smoother. The third block contains blade coor-
dinates entered as pairs. Many of the input parameters are illustrated in figures 4 or 5.

Default values are set in a block data routine. NOTE: Many of the defaults are Sorenson’s original values chosen for iso-
lated airfoils and MUST be reset for turbomachinery problems. In the input description below, default values are given in angle
brackets, <Default=value> or <default.> If no default is given the value must be input.

grid1 - Grid Size and Outer Boundary Parameters
jmax Grid size in the j- (streamwise) direction (see fig. 4.) Typically 128-256, <default=100.>

kmax Grid size in the k- (blade-to-blade) direction (see fig. 4.) Typically 25 (inviscid) to 45 (viscous),
<default=49.>

jtebot j-index of the lower trailing-edge point on a C-grid (see fig. 4,) <default=15.>

jtetop MUST = jmax+1-jtebot for turbomachinery problems, (see fig. 4,) <default=86.>
j-index of upper trailing-edge point on a C-grid.

ntetyp MUST = 3 for turbomachinery problems, <default=1.>
(Controls type of grid, O or C, in the full code.)

nairf MUST = 5 for turbomachinery problems, <default=2.>
(Controls inner boundary spacing in the full code.)

nobshp MUST = 7 for turbomachinery problems, <default=1.>
(Controls type of outer boundary in the full code.)

jairf Number of blade input points entered in variables airfx and airfy in grid3 (see fig. 5,) <default=0.>

nibdst Flag for type of clustering along the blade surfaces, span, and wake, <default=1.>
= 6 Hyperbolic tangent clustering - smoothest, but may be sparse at blade center if jmax is small <default.>
= 7 Hermite polynomial clustering - more uniform, but may grow too quickly near leading and trailing
edges. Good for large jmax.

dsi Grid spacing away from the inner boundary, in same units as blade input (see fig. 4) <default=0.01.>
For inviscid solutions use , i.e., choose dsi to give square cells around the leading or trail-
ing edges.
For viscous solutions, use . Choose larger values for quick solutions,
smaller values for accurate loss, skin friction, or heat transfer.

xleft x-coordinate of the inlet boundary of the grid (see fig. 4,) <default=-6.>
Typically . Smaller values give a more uniform grid, larger values give a
stretched grid.

xright x-coordinate of the exit boundary of the grid (see fig. 4,) <default=6.>
C-type grids can extend indefinitely downstream as long as jtebot and jtetop are large enough to cover the
region downstream of the trailing edge.

x y,()

dsi dsle or dste≈

dsi chord 10 000 to 50,000,()⁄≈

xleft 0.5 to 1.0()± pitch×=

6

xle x-coordinate of the blade leading edge, (see fig. 4,) <default=0.>
The input airfoil coordinates are rescaled to go from xle to xte. To prevent rescaling, set xle to the minimum
value of the input blade coordinates.

xte x-coordinate of the blade trailing edge, (see fig. 4,) <default=1.>
The input airfoil coordinates are rescaled to go from xle to xte. To prevent rescaling, set xte to the maximum
value of the input blade coordinates.

rcorn Radius for the front corner of the C-grid (see fig. 4,) <default=1.>
Typically . Use to give square corners.

maxita(2) Maximum number of iterations on each grid level, <default=200,100>
GRAPE supports multigrid convergence acceleration, but it is so fast on modern computers that multigrid is
rarely used. maxita is an array with two elements. The first element refers to coarse grids and the second ele-
ment refers to the finest grid. Generally maxita(1)=0 to skip the coarse grids and maxita(2)=100 to 300. Use
maxita=0,0 to check initial grid spacings, boundary locations, etc.

norda(2) Number of orders of magnitude to reduce the residuals for convergence, <default=4,1>
norda is an array with two elements. The first element refers to coarse grids and the second element refers to
the finest grid. Generally norda(1)=0 to skip the coarse grids and norda(2)=3 for three orders of magnitude
reduction in the residual. GRAPE will usually terminate after maxita iterations before the norda limit is
reached.

nout MUST = 4 for turbomachinery problems, <default=1>
Parameter controlling output options. nout=4 writes a binary grid to unit 1 in PLOT3D format.

grid2 - Grid Spacing and Algorithm Parameters
nobcas Controls angle between η-grid lines and periodic (outer) boundary. This is an undocumented feature of the

original GRAPE code.
= 0 η-lines are vertical at the periodic boundary <default, recommended>
= 1 η-lines are normal to the periodic boundary.

pitch Cascade pitch in same units as blade input, (see fig. 4,) <default=1.>

yscl Scale factor for blade input y-coordinates <default=1.>
For an annular cascade the y-coordinates are input as . If θ-coordinates are input for yairf, use
to rescale the input. Note that x-coordinates can be rescaled using xle and xte.

dsobi Grid spacing away from the periodic boundary, in same units as blade input (see fig. 4,) <default=0.2.>

Use to get nearly equal spacing at the periodic boundary.

jcap Number of j-points on the inlet part of the C-grid, (see fig. 4.)
Remaining points are distributed over the periodic boundaries. Increase jcap to pull points towards inlet, and
vice-versa.

nle Number of points equally-spaced around the blade leading edge, <default=15.>

nte Number of points equally-spaced around the blade trailing edge, <default=10.> Should be an even number.

dsle Spacing around the leading edge as a fraction of total arc length around blade <default=.0025.>

dste Spacing around the trailing edge as a fraction of total arc length around blade, <default=.0025.>

xtfrac Parameter that controls x-spacing away from the trailing edge, <default=1.>

rcorn pitch 8⁄≈ rcorn 0.=

rθ yscl r=

dsobi 0.5 pitch kmax⁄˙≈

7

The x-spacing away from the trailing edge is roughly . Start with xtfrac=1 and adjust if neces-
sary.

dswex x-spacing at the grid exit, (see fig. 4,) <default is equally-spaced in x.>
Only used if jwakex=1 to stretch grid the downstream.
The grid spacing along the wake cut stretches from at the trailing edge to dswex at the exit.

dswex is hard to estimate in advance, but should be roughly .

dsra (Pressure surface arc length)/(total surface arc length), <default=0.5.>
Used to locate the center of the leading edge clustering on the blade. The clustering is centered about

. Typical values are 0.5 for symmetrical blades, about 0.49 for compressor
blades, and about 0.45 for highly-cambered turbine blades.

joble and jobte
The periodic outer boundary for a C-grid is made up of three segments, a polynomial segment upstream, the
mean-camber line between the blades, and a linear segment downstream. Within GRAPE each segment is
represented by an array of 10 or 11 points which are later reclustered. Variables joble and jobte are indices
where the upstream and downstream segments connect to the mean-camber line, and can be used to manipu-
late the shape of the outer boundary to a limited extent. (See fig. 4)

joble Index on the mean-camber line where the upstream quadratic segment starts. Values can be <11>, 10, 9…
The default <11> starts the upstream quadratic segment at the leading edge. Smaller values move the starting
point inside the passage, which can be useful if the mean-camber line segment is distorted near the leading
edge.

jobte Outer boundary index that connects to the trailing edge of the blade. Values can be … 9, <10>, 11 … The
default <10> connects the trailing edge to points immediately above and below. Larger values move the con-
nection inside the passage. Smaller values move the connection downstream, which may be useful if grid
lines cross the trailing edge circles.

jwakex Flag for stretching the outer boundary grid spacing along the wake (j-direction).
= 0 Equally-spaced outer boundary along the wake.
= 1 Stretched outer boundary along the wake. Spacing at the trailing edge is set by , spacing at
the exit is set by dswex. <default.>

kwakex Flag for expanding the grid spacing across the wake (k-direction).
= 0 Equally-spaced grid across the wake, <default.>
= 1 Grid expands across the wake moving downstream. Probably gives better wake resolution downstream.

aaai, bbbi Exponents controlling the distance that angles and spacings at the inner boundary propagate into the interior.
Small aaai and bbbi give large distances but slow convergence, and vice versa. Any value > 0. is acceptable.
See [2] for details. <Default = 0.45>

ccci, dddi Like aaai and bbbi, but for the outer boundary, <default = 0.45.>

csmoo Smoothing coefficient for periodic boundary <default=0.>
Normally the outer (periodic) boundary points are fixed. If the resulting grid is too sheared at the outer
boundary, setting will smooth the outer boundary points with a Laplace-type filter
after each iteration of the elliptic solver. This may improve the grid while sacrificing control of angles at the
outer boundary. Non-zero values of csmoo may prevent the GRAPE code from converging, although the
grids may still be useful.

xtfrac dste×

xtfrac dste×
xright xte–() jtebot⁄

dsra total surface arc length()×

xtfrac dste×

csmoo (0.1 to 1.0)=

8

grid3 − Blade Coordinates
airfx Array of x-coordinates around the blade, starting at the trailing edge, going clockwise around the blade, and

repeating the first point (see fig. 5.) The coordinates are fit with a cubic spline and so must adequately define
the leading and trailing edges.

airfy Array of y- or coordinates around the blade, ordered like airfx, (see fig. 5.)rθ

9

Figure 2 − 169 x 33 grid for a compressor rotor

Figure 3 − 161 x 33 grid for a centrifugal impeller rotor

Figure 1 − 97 x 33 grid for a turbine vane

j=1

jk

rcorn

j=jmax

Blade

joble moves
this point

ex
it

j=jtetop,
jobte moves
this point

j=jtebot

j=mil

dsi

dsobi

jc
ap

 p
oi

nt
s

on
 in

le
t

pi
tc

h

x

y
=

 r
 θ_

xleft xle xte xright

9

11

11
10

dswex

Figure 4 − GRAPE nomenclature and input variables

Figure 5 − Blade coordinate input variables

j

1, jairf2
3

x

(airfx,airfy)

y
=

 r
 θ_

